
Open Access 

Journal of Forensic and Crime Studies

ScholArena | www.scholarena.com Volume 6 | Issue 1

RESEARCH ARTICLE ISSN: 2638-3578

A Preliminary Study of Geographic Traceability of Soil Physical Evidence:
Machine Learning Recognition of Elemental Fingerprints and Morphological

Features

Zhen Jia, Hongyuan He*, Genyuan Cui and Yujing Li

School of investigation, People’s Public Security University of China, Beijing, 100038, China

*Corresponding Author:  Hongyuan He, School of investigation, People’s Public Security University of China, Beijing,

100038, China, Tel: +86-13311296819, E-mail: 13311296819@189.cn

Citation: Zhen Jia, Hongyuan He, Genyuan Cui, Yujing Li (2024) A Preliminary Study of Geographic Traceability of Soil

Physical Evidence: Machine Learning Recognition of Elemental Fingerprints and Morphological Features, J Forensic Crime

Stu 6: 101

Abstract

Soil is a type of physical evidence that is often found at crime scenes, but it is not efficiently utilized in the process of solving

a crime. In this research, soil samples collected from 20 soil sites scattered in five cities of China were investigated to com-

pare their application values and conditions. The traceability of soil physical evidence was analysed from two perspectives,

namely soil composition and morphology.The elemental fingerprints of the samples were determined using inductively cou-

pled plasma mass spectrometry (ICP-MS), and the samples were source classified by combining principal component analy-

sis,  partial  least  squares  discriminant  analysis,  and support  vector  machine models.  Images  of  the  soil  in  the  visible  band

were collected using a hyperspectral imaging system, and the samples were classified according to their source by combin-

ing  deep  learning  models,  including  BPNN and CNN.  Good classification  results  were  obtained for  both  soil  traceability

methods based on both techniques. Among them, the ICP-MS method combined with the PLS model was able to achieve

100% classification accuracy for trace soil samples, but the experimental cost was high and the pre-processing process was

complicated. Meanwhile, the hyperspectral method combined with the CNN model was able to achieve 99.19% fast and non-

destructive identification, however, there was a high level of demand for soil testing. Notably, the two traceability methods

can be applied to different occasions, and the selection of appropriate analytical detection methods in practical application

will be conducive to the effective use of on-site soil physical evidence of the juries, providing assistance in the detection of

cases and the breakthrough of difficult cases.
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Introduction

Soil is the environmental medium that people were most often exposed to in their lives .Soil evidence can often be found at crime

scenes,  for  example,  on  the  tyres  of  suspects’  vehicles,  on  the  soles  of  suspects’  shoes,  and on the  tools  used  in  committing  the

crime [1]. Once soil is attached to an object, its ability to adhere depends on the later activity of the subject, the nature of the soil it-

self, and the surface condition of the attached subject. However, the elemental fingerprints in soil, especially metal element finger-

prints,  remain relatively constant over time and space without interference from external factors [2].  Due to the wide variety of

soil, their complex composition, and their poor uniformity, the test material is subject to environmental impacts [3,4]. Thus, the

identification of soil evidence is quite difficult, and test results are generally not used independently as evidence but can improve

the evidentiary value of the attached object, provide clues to breaches in security, and narrow down the scope of the investigation.

Current research on soil characteristics in the environment has focused on three areas: moisture content [5-7], organic matter con-

tent [8-10], and elemental fingerprinting [11-12]. For soil samples collected in the field, moisture varies considerably over time; or-

ganic matter also varies significantly due to small sample sizes [13]. Notably, elemental fingerprints had established a certain re-

search foundation in the field of forensic soil analysis [14-15]. In one case [16], the investigators used scanning electron micros-

copy-energy spectrometry (SEM-EDS) and X-ray fluorescence spectroscopy (XRF) to detect soil on the tools of a suspected grave

robber and soil in the robbed grave, then identified the same soil sample elements from both sources, thereby providing strong evi-

dence to identify the suspect.

Inductively  coupled  plasma  mass  spectrometry  (ICP-MS)  has  the  advantages  of  simple  sample  preparation  and  injection  tech-

niques, fast mass scanning, short duty cycle, and low interference with the ion information provided. Its detection sensitivity and

accuracy are higher than those of SEM-EDS and XRF [17-18]. It has extremely low detection limits for most elements and is recog-

nised as the most ideal method for inorganic elemental analysis.

High standard precision lossless spectral imaging is a new type of high-speed lossless spectral imaging technology, which effective-

ly combines mechanical vision spatial imaging and spectral analysis technology to obtain higher resolution, wider band spectral im-

ages, and richer spectral data information [19-20]. In the field of soil testing, hyperspectral imaging technology is widely used,such

as in estimating soil water content [39], inversion of soil organic matter content [40] and forensic chemical analysis of soil [41-42],

while hyperspectral remote sensing techniques [43-45], are often used for hyperspectral collection of soils over large areas. There

have been no reports of traceability analyses of soil physical evidence combining both morphological and elemental perspectives.

Machine learning is an analytical method that has often been used in recent years in the field of intelligent identification of physi-

cal and chemical evidence; it can quickly and accurately identify large amounts of data and is widely used in the analysis of soil hy-

perspectral image data  [46]. A total of 96 ground soil samples were collected through hyperspectral acquisition by Tahmasbian

[47], who developed a partial least squares regression model to correlate the total carbon (TC), total nitrogen (TN) ,δ 13 C, and δ

15 N values obtained from isotope ratio mass spectrometry with soil reflectance spectra. Wu [48] used a visible-NIR hyperspec-

trometer to collect 140 in situ hyperspectral images of soil profiles and compared the predictive ability of partial least squares re-

gression and partial least squares-support vector machine (LS-SVM) models for soil salinity content. With the advancements in

computer science, deep learning represented by convolutional neural networks (CNNs) has gradually developed, extracting fea-

tures layer by layer through convolution and pooling. In addition, it possesses the characteristics of weight sharing and local con-

nectivity, which can train large-scale data more effectively than traditional machine learning models [49]. Meanwhile, Riese [50]

used five CNN models that are available on GitHub to target the soil hyperspectral data in the LUCAS dataset and showed that the

shallow CNN outperformed the ResNet network and CoordConv network in addressing this problem. The shallow CNN was

found to be better than the residual neural network with complex structure and parameters in one-dimensional data processing.
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In this study, soil samples were collected from 20 sampling points in five cities of China, and multi-elemental analysis and spectral

information were collected using ICP-MS and hyperspectral imaging, respectively, to establish the best machine learning identifica-

tion models for different data types. Finally, the two methods were evaluated for traceability of the soil evidence, providing new

ideas for the use of soil evidence in investigative practice. The research process was shown in Figure 1.

Figure1: Research process for Soil physical evidence

Materials and Methods

Apparatus and Reagents

Apparatus

The main instruments used in this paper were 7800 Inductively Coupled Plasma Mass Spectrometer (ICPMS) produced by Agilent

Technologies,  EPMA-1720 Electron Probe Mass Spectrometer (EPMS) produced by Shimadzu, DKQ-1800 Intelligent Tempera-

ture Controlled Electric Heater (DKQ-1800) produced by Shanghai Yi Yaoyao Instrument Science and Technology Development

Co.  Ltd.;  Hyperspectral  imaging system SEC-E1100 (Wayho Technology Co.);  and Synergy ultrapure water  system from Merck

Millipore. The specific parameters of the instrument are shown in Table 1.2.

Table1: ICP-MS Instrument Operating Parameters

Projects Parameters Projects Parameters

Radio frequency power 1500 W Cooling gas flow 15.0 L·min
-1

Carrier gas flow 1.0 L·min
-1

Auxiliary gas flow 1.0·L
-1

Sampling depth 0.085 metres Analysis model Collision reaction cell

Repetition rate 3 times Acquisition Mode Peak-hopping acquisition
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Table2: Hyperspectral imaging system Operating Parameters

Product model SEC-E1200

Spectral range 450-950nm

LCTF scanning accuracy 1nm

LCTF half-height width (FWHM) 10nm@550nm

LCTF response time 10-200ms

LCTF field angle ±5°

Image sensor type Backlit scientific CMOS

Image sensor size 1.2 inches

Image sensor pixel size 6.5μm×6.5μm

Image resolution 2448×2048

Reagents

UPS grade concentrated nitric acid (68 %) (Suzhou Jingrui Chemical Co.,  Ltd);  analytical pure hydrofluoric acid (40 %) (Merck

Millipore,  Germany);  high  purity  helium  He  (≥99.999  %)  (Henan  Yuanzheng  Special  Gases  Co.,  Ltd);  high  purity  argon  Ar

(≥99.999 %) (Henan Yuanzheng Special  Gases  Co.,  Ltd);  ICP-MS mixed internal  standard stock solution (Agilent  Technologies

Co.) ICP-MS multi-element mixed standards (Agilent Technologies Ltd.)

Experimental Methods

Soil Sampling and Pre-Treatment

A total of 100 soil observation samples were obtained using a five-point sampling method. The sampling method is shown in Fig-

ure 2. Each sample was repeated three times during testing.

Figure 2: Sampling method (Five-point sampling of the four corners and center of the square)

Five soil samples were taken from each sampling site using the five-point sampling method; each sample was obtained by mixing

five soil samples from a smaller area (the five-point sampling method was still followed in the smaller area).Where the sampling

spacing X depends on the type of sampling points and the total area.
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For example, in parks, the X value can be 0.1~0.2 meters, while in flower beds, the X value is set to 0.2~0.5 meters. The sampling

depth was 0.1 meters, and each portion was about 5kg.

Figure 3: Sampling cities and sampling points

The sampling cities and sampling points are shown in Figure 3, and the source information and numbers of the soil samples are

shown in Table 3. The soil was dried overnight in a blast drying oven at 80°C and passed through a 50-mesh sieve to remove plant

and animal residues and large stony soil. A image of the soil samples from the 20 sampling points was taken under a 200x scanning

electron microscope as shown in Figure 4. Observe for the presence of plant and animal remains and other impurities.

Table3: Soil sample number and source

Sample No City Sampling sites Location details Sampling
quality(/kg)

1 Baicheng Olympic Sports Park Artificial garden 8.4

2 Baicheng Municipal Public Security Bureau Artificial garden 7.2

3 Fuyang Fortune Plaza, Taihe County Artificial garden 5.3

4 Xi'an Xi'an Secondary School Artificial garden 10.6

5 Xi'an Bell Tower Flower Bed Artificial garden 11.8

6 Xi'an Kuo Du Police Station Artificial garden 6.9

7 Baicheng First School Garden Artificial garden 5.3

8 Zhengzhou Long Lake Park Artificial garden 7.7

9 Fuyang Taihe Family Community Natural soil 7.6

10 Zhengzhou Purple Mountain Road flower bed Natural soil 8.4

11 Tongzhou Golden Jubilee Garden Natural soil 9.3

12 Baicheng Bookish Blue County Natural soil 6.2

13 Zhengzhou Forest Park Natural soil 5.5

14 Zhengzhou People's Park Artificial garden 5.9

15 Fuyang Tai Wo Hospital Natural soil 8.2

16 Tongzhou Luhe Hospital Natural soil 8



Journal of Forensic and Crime Studies 6

ScholArena | www.scholarena.com Volume 6 | Issue 1

17 Baicheng South Lake Park Artificial garden 12.4

18 Tongzhou Canal Secondary School Artificial garden 7.5

19 Baicheng Hanlin Academy Natural soil 5.9

20 Tongzhou Xihaizi Park Natural soil 7.1

Figure 4: Soil quality of 20 sampling sites × 200 SEM

ICP-MS Multi-Element Determination and Data Analysis Methods

Weigh 0.25 g of sample accurately, add 5 mL of 65 % nitric acid and 2 mL of 40 % hydrofluoric acid and carry out microwave diges-

tion. The microwave digestion procedure refered to the instrument operating instructions is shown in Table 4.

Table4: Microwave digestion procedure

Steps Temperature（℃） pressure（atm） Holding time（min）

1 120 15 5

2 150 20 5

3 180 30 10

4 190 35 20
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The digested samples were placed on an electric heating plate at 160 °C for 2 h to drive out the acid until the liquid volume was

1~2 mL. The samples were then diluted with ultrapure water and fixed to 50 mL.

Eighteen elements and isotopes of Na, Al, 43Ca, 44Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Ag, Cd, Ba and 206Pb, 207Pb, 208Pb were selected

as the elements and isotopes to be measured, and a 5% HNO3 solution was diluted to 0.5, 1, 5, 10, 20, 50, 200 and 500 μg/L as the

standard solution.

The internal standard elements were selected as 45Sc, 72Ge, 103Rh and 209Bi. 45Sc was selected for elements with mass numbers

23-52; 72Ge for elements with mass numbers 55-75; 103Rh for elements with mass numbers 107-137; and 209Bi for elements with

mass numbers 206-208.

Principal component analysis was used to downscale and visualize the data, converting linearly correlated data into a set of linearly

uncorrelated or less linearly related data by orthogonal transformation. For elemental fingerprinting of soil samples, there is often

a linear correlation between the content of multiple elements. Lionel [51] found a prominent correlation between Cr, Ni and clay

when they analyzed the spatial distribution and sources of six trace elements (As, Cd, Cu, Cr, Ni, Pb) in soils from south-western

France. Zhang  [52] surveyed the spatial distribution and sources of six trace elements in the Chinese Loess Plateau. The study

showed that soil elements in different sub-basins contain important correlation information. For example, Ca is highly homolo-

gous with Fe in two sub-basins, and Cu, K, Mg, Mn, Na and Zn are of similar origin in individual sub-basin soils. Principal compo-

nent analysis can therefore be used to effectively resolve the correlations between soil elements and visualize the differences and

similarities between the different samples.

Partial least squares discriminant analysis and support vector machine models (SVMs) were used to classify and identify the ele-

mental fingerprints of soil samples. Support vector machine (SVM) is an optimized discriminant model that attempts to generate

optimal hyperplanes or decision boundaries in a high-dimensional space to best distinguish between different classes. These hyper-

planes are often constructed by analyzing the data points that are most likely to be misclassified (i.e.  those in the vicinity of the

pre-optimization hyperplane). These support vectors are iteratively weighted in the training phase to obtain distances (i.e. margin-

s) that maximize the distance between classes separated by hyperplanes [53]. Based on the sample size, Linear, quadratic and cubic

polynomials were chosen as kernel functions for the training of the model in this experiment. Bayesian optimization and cross-vali-

dation were used to optimize the penalty coefficient (C) and the regularization parameter (ε) of the model The partial least squares

discriminant combines the advantages of principal component analysis and multivariate linear discriminant analysis and can effec-

tively perform regression or classification analysis on independent variables with multiple correlations. Principal component analy-

sis is used to obtain several main factors that contain information about the original data and are not correlated with each other,

and multiple regression analysis is done based on the factors obtained by dimensionality reduction [54]. The number of principal

components was traversed to determine the principal components to be retained for the purpose of obtaining the best classifica-

tion effectiveness and the minimum number of factors. Principal component analysis, support vector machines, and partial least

squares models were implemented by MATLAB 2019b software

Hyperspectral Image Acquisition and Processing Methods

Weigh about 2.0g of the sieved soil and disperse it in the center of the hyperspectral image acquisition unit with a uniform white

liner in the background. The hyperspectral unit uses four 50W halogen lamps to illuminate the soil sample uniformly at an angle

of 45°. The focal length of the image acquisition unit is adjusted via the control console until  the sample soil is clearly visible at

700nm.  A matching  white  board  is  used  for  correction prior  to  acquisition.  A total  of  101  images  of  the  soil  at  different  wave-

lengths were acquired by selecting the visible light range from 400nm to 900nm and acquiring every 5nm. The reflectance values

of the observed points in each soil image were finally calculated from the image information of the whiteboard to obtain the soil re-

flectance spectral images.
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The acquired hyperspectral images are also pixel fused to reduce noise interference and analysis load before data analysis is carried

out. The 10*10 spectral summation strategy is used to average the 10*10 pixel size image segments after removing background in-

formation from the images using an algorithm. The pixel fusion strategy refers to previous studies by Wang [55] and others.

Hyperspectral images of soil samples were classified and identified using partial least squares discriminant analysis, back propaga-

tion neural network and convolutional neural network. The data volume of hyperspectral image observation samples is large and

common machine learning models tend to fail for large-scale training samples [56]. Therefore, an attempt was made to use current-

ly popular deep learning models, including feedforward neural networks (BPNN) and convolutional neural networks (CNN), for

the recognition of hyperspectral image data.

Software

Principal  component  analysis,  support  vector  machine  model  and  partial  least  squares  model  were  implemented  by  MATLAB

2019b software; BPNN and CNN deep learning models were implemented based on python 3.7.12 and Tensorflow 2.8.0.

Results and Discussion

Elemental Fingerprint Acquisition

Standard Curve Fitting

A regression curve was established with the calculated concentration as the horizontal coordinate and the response intensity ratio

(corresponding intensity of the element to be measured / corresponding intensity of element He) as the vertical coordinate, and

the overall effect was improved. The linear equations and correlation coefficients are shown in Table 5.

Table5: Fitting results of standard curve

Element Linear equation Correlation coefficient(r)

Na y=0.0014*x-0.0050 0.9983

Al y=1.3136E-004*x+2.4250E-004 0.9997
43

Ca y=2.5198E-005*x+2.0085E-005 0.9998

44

Ca y=2.4502E-004*x+6.1830E-004 1

Multi-Element Determination

A total of 100 soil samples from 20 sampling sites were pre-treated and injected for the determination of 18 elements and isotopes

in the samples,  with each sample measured three times with a relative standard deviation of less than 15 %. The results showed

that  the  elemental  fingerprints  varied considerably  between the  20  sampling sites.  The elemental  determinations  of  five  parallel

samples from the 20 sampling points were averaged and normalized to obtain the relative elemental concentrations of all soil sam-

ples. The relative elemental concentrations eliminate errors in the processing of the samples and provide a visual representation of

the relative abundance of different elements between samples. A heat map was plotted using the relative elemental concentrations,

as shown in Figure 5, where the higher the relative elemental concentration, the darker the color. As can be seen from the graph,

there is a large variation in the elemental fingerprints of the 20 sampling points.
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Figure 5: Relative element concentration heat diagram

Elemental Fingerprinting Analysis

Visualization Analysis

To visualize the differences in the elemental fingerprints of the soil samples between different sampling points, the information on

the content of the 18 elements and isotopes was downscaled using principal component analysis, and the results showed that the

first three principal components were able to retain 93.26% of all the information; the first five principal components were able to

retain 97.56% of all the information. The loadings of the first three principal components are shown in Table 6, and the cumulative

contributions of the first five principal components are shown in Table 7.

Table6: Loads of the first three principal components

Element Principle component 1 Principle component 2 Principle component 3

Na -0.1963 -0.4863 0.0184

Al 0.2375 -0.2389 0.0128
43

Ca 0.2403 -0.0698 0.0929

44

Ca 0.2397 -0.0898 0.0781

Cr 0.2296 0.1326 -0.011

Mn 0.239 -0.0833 -0.1156

Fe 0.2484 0.0302 -0.0502

Co 0.2461 0.0716 -0.1053

Ni 0.2398 0.2156 -0.009

Cu 0.2396 0.2228 -0.0089

Zn 0.2151 0.3951 -0.0409

As 0.2404 -0.0294 -0.1481

Ag 0.1677 0.0124 0.798
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Cd 0.2307 0.1769 0.2692

Ba 0.1739 -0.4904 0.3055
206

Pb 0.2392 -0.1704 -0.171

207

Pb 0.2363 -0.1987 -0.2009

208

Pb 0.2391 -0.1867 -0.17

Table7: Cumulative contribution rate of the first five principal components

 PC score Contribution rate /% Cumulative contribution rate /%

PC 1 15.9308 83.85 83.85

PC 2 1.1433 6.02 89.86

PC 3 0.7145 3.76 93.62

PC 4 0.4657 2.45 96.07

PC 5 0.2827 1.49 97.56

PC=principal component

Similar loadings exist between the two isotopes of calcium and the three isotopes of lead, for the first principal component the ele-

ment sodium has opposite loadings to the other elements, indicating that the distribution of the element sodium differs significant-

ly  from  the  other  elements.  The  first  three  principal  components  were  selected  to  plot  the  three-dimensional  distribution,  as

shown in Figure 6. There are differences in the elemental fingerprints between the 20 sampling points and most of the samples are

well clustered, but there is confusion between samples from certain sampling points. For example, No. 6, No. 12 and No. 19 are

marked in red circles. Continued use of machine learning model analysis may improve the objectivity and accuracy of the classifi-

cation.

Figure 6: Element fingerprint visualization between sampling points
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To explore whether the differences in elemental fingerprints between the 20 sampling points were related to geographical location,

we set the labels to five cities and visualized the results as shown in Figure 7(a). When the samples were divided based on the city

labels, the soils from the five city sources could not be distinguished well. It indicates that the differences between the samples do

not lie in the differences between the cities, so further analyses are required. Afterwards, we excluded the macronutrients and only

retained the eight heavy metal elements and isotopes of chromium (Cr), cobalt (Co), arsenic (As), silver (Ag), cadmium (Cd) and

lead (206Pb, 207Pb, 208Pb) for analysis again. The results of the downscaling and visualization are shown in Figure 7(b), where sample

numbers 1, 2, 3, 4 and 5 represent soil samples from Baicheng, Jilin; Fuyang, Anhui; Xi'an, Shaanxi; Zhengzhou, Henan and

Tongzhou, Beijing, respectively.

Figure 7: Element fingerprint visualization between cities

(a) Visual distribution of 18 soil elements by two-dimensional principal component analysis; (b) visual distribution of eight heavy

metal elements by two-dimensional principal component.Baicheng

Compared with the full range of soil elements, the visual classification results of the screened heavy metal elements showed a large

improvement,  especially  the  samples  from  Baicheng  achieved  significant  clustering.  A  small  number  of  samples  from  Xi'an,

Zhengzhou and Tongzhou were difficult to distinguish (with the methodology of this study). Based on the above analysis, the sub-

sequent use of machine learning models to distinguish the urban origin of soils may be unreliable, which also illustrates the consis-

tency of soil elemental composition at small scales and the randomness at large scales.

Element Fingerprinting

The 100 samples were divided into training and test sets in a 4:1 ratio randomly, and the SVM models with linear functions, qua-

dratic polynomials and cubic polynomials as kernel functions all had a test set accuracy of 99%, with only one sample in sampling

point 6 having a mismatch.

The results show that it is feasible to use all 18 elements and isotopes as features to identify fine location sources of soil evidence,

and very high identification accuracy can be achieved using the support vector machine model. By disrupting the sampling point

information labels and using the support vector machine model again for identification, the results showed that the identification

accuracy of the three support vector machine models dropped significantly to 28%, 16% and 14% respectively, indicating that the

method can effectively identify the sampling point sources of soil based on the elemental fingerprint features.

This was followed by training and identification with a partial least squares model based on the same data. The first step was to se-

lect the optimal number of retained components, so the effect of the number of principal components on the classification results
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was traversed from 1 to 18, as shown in Figure 8. The higher the number of retained principal components, the better the identifi-

cation results. When 14 principal components are retained, the recognition accuracy has reached 100%. This indicates that all 18 el-

ements  have  a  significant  influence  on  soil  classification,  which  is  consistent  with  the  results  of  the  factor  analysis.  The  results

show that the PLS-DA classification is better than the support vector machine model and can achieve complete classification of

soil elemental fingerprints.

Figure 8: Importance of principal component variables

Hyperspectral Image Analysis

Model Development

For hyperspectral image data format characteristics, the latest deep learning methods, including feedforward neural networks and

convolutional neural networks, were selected for model construction and optimization, and compared with the traditional spectral

data analysis model of partial least squares discriminant. All hyperspectral images were acquired, background removed, and pixel

fused to obtain a total of 392,250 observation samples, which were divided into training set, validation set and test set in the ratio

of 7:1.5:1.5. The performance parameters of all model development sessions were optimized based on the results of the validation

set.

Each observation sample contains 101 data points, and the feature factors obtained by using partial least squares to reduce the di-

mensionality are the most influential metrics on the classification results. Therefore, we evaluated the impact of the number of fac-

tors after dimensionality reduction on the chase removal amount of the validation set and selected the main adult score with rela-

tively high recognition accuracy and relatively few retained factors. The optimization results show that the validation set model ac-

curacy is gradually increasing with the increase of retained master fractions and remains stable at around 86%. The results of the

PLS-DA model parameters evaluation are shown in Figure 9(a).

BPNN is one of the most fundamental network models in deep learning. During the optimization process, the number of fully con-

nected layers, the batch size for training, and the choice of activation function have a great impact on the performance of the final

model. The number of fully connected layers will affect the depth and number of parameters of the overall deep learning model,

and for complex learning objects, deeper fully connected layers are often required to achieve this. For 1*101 spectral data, a shal-

low neural  network is  already sufficient  for  feature  learning and extraction.  Boosting the number of  neural  network layers  may

lead to situations such as gradient disappearance. The activation functions of classification models mainly include Tanh and Relu.

Tanh can retain more information of the original parameters and is more suitable for refinement differentiation of small-scale sim-

ilar samples;  Relu function can significantly improve the training speed and mitigate the negative impact of gradient disappear-
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ance in deeper networks [54]. The batch size of training also has an important impact on model training accuracy. In general, as the

batch size increases, the time required for one Epoch training decreases, while the Epoch required to train to the same accuracy in-

creases accordingly. The number of Epochs was fixed in order to evaluate the performance of different model methods, so that a

large batch size would reduce the training time and a small batch size would improve the training accuracy. The results of the feed-

forward neural network model optimization are shown in Figure 9(b). CNNs are the most important deep learning models devel-

oped in recent years and are widely used in image processing and are active in the field of artificial intelligence algorithms as the ba-

sis for several derivative algorithms. Advanced convolutional neural network models such as VGGNet and ResNet outperform the

traditional LeNet for recognition of complex 2D and 3D objects, but shallow LeNet still has the best model performance in mod-

elling thought spectral data. In this study, a three-layer one-dimensional convolutional neural network was constructed and the

model parameters (number of convolutional layers, number of fully connected layers, activation function, etc.) were optimized,

and the results are shown in Figure 9(c). The finalized feedforward neural network and convolutional neural network model pa-

rameters are shown in Table 8.

Table8: Hyperparameters of CNN model

Layer Input shape Output shape Filter setting

Conv1d (101,1) (51,32) Size=3;Strides=2

MaxPool1d (51,32) (26,32) Size=3;Strides=2

Conv1d (26,32) (26,64) Size=3;Strides=2

MaxPool1d (26,64) (13,64) Size=3;Strides=2

Conv1d (13,64) (7,128) Size=3;Strides=1

MaxPool1d (7.128) (4,128) Size=3;Strides=2

Flatten (4,128) 512 -

Dense 512 256 -

Dense 256 18 -

Activation(Softmax) 18 18 -

Figure 9: Optimization of three models.(a) PLS-DA;(b) BPNN;(c)CNN

Hyper Spectral Image Recognition

Hyperspectral images were recognized using the optimized model. the PLS model took the shortest time from training to recogni-

tion, but the final validation set accuracy was only 85.25% with the inclusion of 100 principal components. This indicates that the

PLS model is no longer able to achieve accurate classification under the condition of large sample size. Therefore, deep learning
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methods were used to further explore the spectral data features. The changes in accuracy and loss function during the training of

the feedforward neural network model and the convolutional neural network model are shown in Figure 10. As can be seen from

the figure, the training process of the CNN model was smoother, both in terms of loss function convergence and recognition accu-

racy  improvement.  At  around  round  80,  the  BPNN  model  showed  a  serious  oscillation,  which  was  intermittent  and  irregular,

caused by local anomalous data, and seriously affected the training efficiency. In terms of the training process, the CNN significant-

ly outperformed the BPNN.

Figure 10: Training process.(a) is the accuracy and loss function of the training set of the BPNN during training; (b) is the accuracy and loss

function of the test set of the BPNN during training; (c) is the accuracy and loss function of the CNN in the training set during training; (d) is

the accuracy and loss function of the test set of the CNN during training

After training, the test set data was substituted into the three models for prediction. The results showed a final recognition accura-

cy of 85.25% for the PLS-DA model, 91.65% for the BPNN model and 99.19% for the CNN model. The evaluation parameters for

the classification results of the three models are shown in Table 6, and the confusion matrix of the results is shown in Figure 11. F1

score balances the two metrics of recall and accuracy, which is the most used evaluation metric in machine learning classification

problems. The F1 score of the CNN model reached 0.9908, which was able to distinguish significantly between the different soil hy-

perspectral images between the 20 sampling points. As shown in the confusion matrix, more and darker red parts represent more

misclassified samples. It is clear that the PLS-DA model classification results have the most pronounced confusion matrix in red,

followed by BPNN, and the CNN images have the least amount of red parts.

Table9: Model evaluation

Model Accuracy/% Precision Recall F1-score

PLS-DA 85.25 0.8629 0.839 0.8437

BPNN 91.65 0.9104 0.9089 0.9083

CNN 99.19 0.9909 0.9908 0.9908



15 Journal of Forensic and Crime Studies

ScholArena | www.scholarena.com Volume 6 | Issue 1

Figure 11: Confusion matrix for classification results.(a), (b) and (c) represent the confusion matrix of hyperspectral classification results for

PLS, BPNN and CNN models respectively

Discussion

The two soil traceability analysis methods distinguish between the microchemical composition and macro-morphological charac-

teristics of the soil. In terms of accuracy of the results, the soil elemental fingerprinting method combined with an appropriate ma-

chine learning model has better accuracy. That is,  when combined with partial least squares discriminant analysis,  it  can distin-

guish 100% of the information from 20 soil collection points. Another advantage of using ICP-MS is the low volume of material

needed, requiring only 0.25g of pre-processed soil per sample, which can be very helpful in the analysis of trace evidence [57].

The use of hyperspectral soil images and mathematical modelling to distinguish the source of the soil is superior to the use of ele-

mental fingerprints for classification. First, elemental analysis instruments such as ICP-MS are expensive and require more com-

plex  pre-treatment  processes,  such  as  microwave  digestion,  autoclave  digestion,  and  wet  digestion.  Moreover,  it  is  difficult  to

achieve the sample size required for machine learning because of the small amount of analyzable data obtained per test. In con-

trast, hyperspectral techniques are convenient, fast and non-destructive, which can meet the time-sensitive requirements of detec-

tion [58].  However,  hyperspectral  detection requires  a  certain  amount  of  sample  material.  For  example,  each image  acquisition

needs to consume about 2g of soil; otherwise, the color of the substrate could not be completely covered under the acquisition lens

which, in turn, would have an impact on the next data processing step. The hyperspectral detection of thinner (i.e., smaller) soil

layers needs to be further investigated and may require a more optimized background removal algorithm.

Conclusion

In this study, the elemental fingerprints and hyperspectral images of soil samples from five cities and 20 sampling sites in China

were analyzed using ICP-MS and visible-NIR hyperspectroscopy, respectively, to compare two ideas of soil physical evidence trace-

ability based on micro-composition and macro-morphology. In the elemental analysis, principal component analysis was used to

downscale and visualize the elemental fingerprint information, and then SVM and PLS-DA were used to identify the soil sampling

points. In the hyperspectral image analysis, the images were processed using pixel fusion and background removal. Thereafter, the

classification efficacy of the PLS-DA, BPNN, and CNN models were compared. The results show that the ICP-MS-based soil ele-

mental fingerprinting data provide more accurate classification results and even achieve 100% complete classification when com-

bined with PLS-DA. However,  the analysis is  more costly and sample pre-processing is more complex. The hyperspectral imag-

ing-based soil morphology analysis also achieves higher identification performance, especially when combined with the CNN mod-

el, which increases the classification accuracy to 99.19%.
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For small amounts (<1g) of evidence at crime scenes, ICP-MS can be used to obtain fingerprinting information on the extracted

soil  material.  For larger residual amounts of soil  evidence, hyperspectral image acquisition is recommended, which requires less

soil pre-processing, is nondestructive, and allows for subsequent destructive analysis. Thus, the soil evidence collected at the scene

can be effectively used to compare suspicious samples and make a comprehensive study in conjunction with the case to obtain key

clues to solve the case. For the geographical traceability of soil physical evidence, future research needs to expand the sample size

and apply more machine learning methods in the actual investigation.
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